

Laboratory & Professional skills for Bioscientists Term 2: Data Analysis in R

Week 4: Chi-squared tests

Overview of topics

Week	Торіс
2	Introduction to module, statistics and RStudio including first figure
3	Hypothesis testing, variable types; functions (inbuilt), different ways of getting data into RStudio, getting help in RStudio
4	Chi-squared tests
5	The normal distribution, summary statistics and confidence intervals; user- defined functions, RStudio
6 and 7	One- and two-sample t-tests and their non-parametric equivalents (2 lectures)
8	One-way ANOVA and Kruskal-Wallis
9	Two-way ANOVA incl understanding the interaction
10	Correlation and regression

Follow up from last week's practical

- Independent study: seal myoglobin exercise at the end of this lecture...
- But first.....

Summary of this week

- We start significance testing
- We will introduce the analysis of counts of things falling into mutually exclusive categories using two types of chi-squared test

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- recognise when to use chi-squared Goodness of Fit and Contingency tests (MLO 2)
- be able to carry out, interpret and report scientifically both types of test in R (MLO 3 and 4)

Why chi-squared?

- When we count the number of things in categories and compare the numbers we observe to numbers we expect under a null hypothesis.
- H₀ might expect numbers to
 - be the same, or
 - follow a particular pattern, or
 - match the pattern in another group
- Chi-squared allows us to make the comparison statistically

Our two example scenarios

- The Candy-striped spider can be plain or striped
 - 2 alleles at one locus, striped dominant to plain
 - We perform: Ss x ss = Ss, Ss, ss, ss
 - We expect the ratio of striped : plain to be 1:1

Example scenarios

- Food choice by pig breeds
 - We don't know what proportions are expected but do expect it to be same for each breed

Welsh

Tamworth

Essex

cabbage

sugarbeet

swede

8

Two types of scenario thus two types of χ^2 test

 We know what the proportions should be (known as *a priori* expectations)

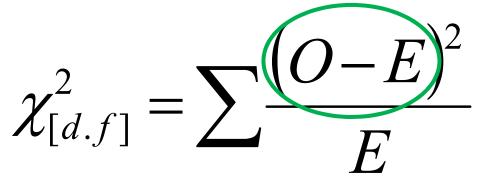
Goodness of fit (e.g., candy striped spiders)

 We don't know what the proportions should be (without *a priori* expectations) but we know they should be the same in each group Contingency (e.g., pigs and food)

The Chi-squared formula $\chi^{2}_{[d.f]} = \sum \frac{(O-E)^{2}}{E}$

- O observed number
- E expected numbers
- $\boldsymbol{\Sigma}-\text{take}$ the sum of

The Chi-squared formula



The difference between what we see and what we expect to see if H_0 is true

...squared so positive

.....relative to expected value

Gets bigger as the difference increases.

Also as number of categories increase therefore d.f. matter

χ^2 Goodness of fit test

- The expected values (null hypothesis) are derived from some theory
- We test the fit of our data to the theory
- The 'theory' can be a uniform distribution
- In our first example the theory is Mendel's Law (and happens to be uniform too)

The Candy-striped spider: Striped : plain is 1:1
 – 63 offspring

Observed	28	35
Expected	31.5	31.5

At least two ways to conduct in R.

- 1. By coding the formula
- 2. By using the inbuilt function

We'll do both; you can use either.

- 1. By coding the formula
 - a) Observed values

	X	
Observed	28	35
expected	31.5	31.5

```
# the observed data
obs <- c(28, 35)</pre>
```

```
# total number of observations
total <- sum(obs)</pre>
```

- 1. By coding the formula
 - b) Expected values

	X	
Observed	28	35
expected	31.5	31.5

calculated the expected values
the H0 is for a 1:1 ratio
i.e., half the total in each
exp <- c(total / length(obs), total / length(obs))
I've used length(obs) rather than 2
because it makes the code more reusable</pre>

- 1. By coding the formula
 - c) Code the formula

$$\chi^2_{[d.f]} = \sum \frac{(O-E)^2}{E}$$

	X	OR
Observed	28	35
expected	31.5	31.5

code the formula
chi <- sum(((obs - exp)^2) / exp)
[1] 0.7777778</pre>

- 1. By coding the formula
 - d) Find the probability of getting a χ^2 of 0.778 or more extreme (bigger)

	X	- Corre
Observed	28	35
expected	31.5	31.5

```
# look up the probability of getting a chi squared
# of 0.778 or more extreme (bigger)
#
# the degrees of freedom are the number of
# categories minus 1
df <- length(obs) - 1
pchisq(chi, df = df, lower.tail = FALSE)
# [1] 0.3778216
```

χ² Goodness of fit test: example **Conclusion**

- $\chi^2 = 0.78$; *d.f.* = 1; *p* = 0.38
 - p > 0.05, therefore the test is not significant
 - Results are consistent with a 1:1 ratio
- "There was no significant difference between the observed and the expected ratio."

χ^2 Goodness of fit test: example **Conclusion**

• IF you had χ² = 4.6; *d.f.* = 1; *p* = 0.032

– p < 0.05 therefore the test is significant</p>

– Results are NOT consistent with a 1:1 ratio

"There was a significant difference between the observed and expected ratio ($\chi^2 = 4.6$; *d.f.* = 1; *p* = 0.032)."

"There were significantly more xxxx and fewer xxxx than expected ($\chi^2 = 4.6$; *d.f.* = 1; *p* = 0.032)." includes direction

1. By using the inbuilt function

	X	
Observed	28	35
expected	31.5	31.5

CHI-SQUARED BY CODING THE FORMULA # # we can use the same obs vector chisq.test(obs)

```
Chi-squared test for given probabilities
#
#
# data: obs
# X-squared = 0.77778, df = 1, p-value = 0.3778
```

But what to use?? What you prefer but....

1. By coding the formula

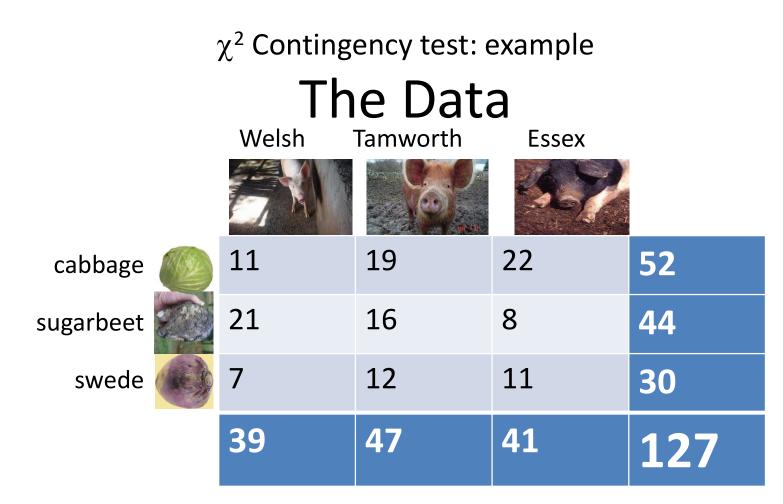
Useful when your expected are derived from a more complex theory/idea (e.g., poisson distribution, binomial distribution) or you need to alter the d.f.

By using the inbuilt function
 Easy when the ratio is 1:1, 1:1:1, 1:1:1 etc
 But take care – other H₀ must be specified

χ^2 Contingency test

- Food choice by pig breeds
 - We don't know what proportions are expected but do expect it to be same for each breed

 Null hypothesis: proportion of foods taken by each breed is the same, *i.e.*, no association between breed and food type



Expected values are derived from the data

Overall pref for cabbage = 52/127We expect (the H₀)same for each breed

Where do the expected values come from?

	Welsh 7	Famworth	Essex	
cabbage	11	19	22	52
sugarbeet	21	16	8	44
swede	7	12	11	30
	38	47	41	127

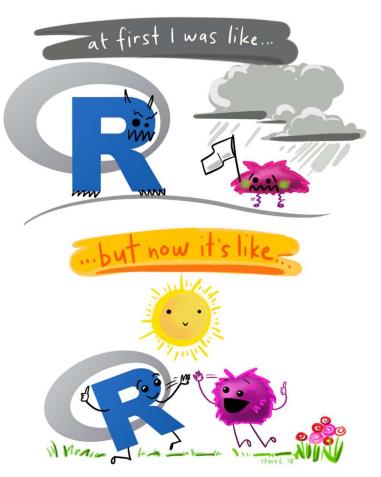
Overall preference for cabbage = 45/127

Thus: Exp no. of welsh preferring cabbage = 52/127 * 38 = 15.97 Exp no. of tamworth preferring cabbage 52/127 * 47 =19.24 Exp no. of essex preferring cabbage 52/127 * 41 = 16.79 RULE: Expected number for each cell: Row total * Column total / Overall total χ² Contingency test example Where do the expected values come from?

Wow, that's a pain!

R to the rescue!

@allison_horst



R's inbuilt function will do that!

First, add the data

Note: this is the only time we'll use a matrix datatype – we normally use dataframes.

It's helpful to name the rows and columns

And this is partly why! Dataframes always have named columns.

Now we have...

#	t	Food		
#	breed	cabbage	sugarbeet	swede
#	welsh	11	21	7
#	tamworth	19	16	12
#	essex	22	8	11

Run the inbuilt test

```
chisq.test(food_pref)
```

```
# Pearson's Chi-squared test
#
# data: food_pref
# X-squared = 10.64, df = 4, p-value = 0.03092
```

χ^2 Contingency test: example degrees of freedom

 Degrees of freedom are not number of categories – 1 but

(rows - 1)(cols - 1) = 2 * 2 = 4

•
$$\chi^2_{[4]} = 10.64$$

χ² Contingency test **Conclusion**

- Thus the test is significant (we reject the null hypothesis)
- Conclude: evidence of a preference for particular foods by different breeds
- But in what way? ("direction of effect")
 Who likes what?

χ² Contingency test **Conclusion**

In what way – examine the observed and expected values. Observed:

#	-	food		
	breed		sugarbeet	swede
#	welsh	11	21	7
#	tamworth	19	16	12
#	essex	22	8	11

Expected:

cł	<pre>chisq.test(food_pref)\$expected</pre>				
#	H	Food			
#	breed	cabbage s	ugarbeet s	swede	
#	welsh	14.47619	13.87302	9.650794	
#	tamworth	17.90476	17.15873	11.936508	
#	essex	15.61905	14.96825	10.412698	

χ^2 Contingency test **Conclusion**

Direction of deviations; size of deviation Observed:

Higher than expected Less than 1 different Lower than expected

#	н	Food		
#	breed	cabbage	sugarbeet	swede
#	welsh	11	21	7
#	tamworth	19	16	12
#	essex	22	8	11

Expected:

<pre>chisq.test(food_pref)\$expected</pre>									
#	ł	Food							
#	breed	cabbage s	ugarbeet s	swede					
#	welsh	14.47619	13.87302	9.650794					
#	tamworth	17.90476	17.15873	11.936508					
#	essex	15.61905	14.96825	10.412698					

χ² Contingency test **Conclusion**

Different pig breeds showed a significant preference for the different food types ($\chi^2 = 10.64$; *d.f.* = 4; *p* = 0.031) with Essex much preferring cabbage and disliking sugarbeet, Tamworth showing a small preference for Cabbage and Welsh showing a strong preferencing for sugarbeet.

#	-	food		
#	breed	cabbage	sugarbeet	swede
#	welsh	11	21	7
#	tamworth	19	16	12
#	essex	22	8	11

Summary

Two types of scenario thus two types of χ^2 test

- Goodness of fit
 - We know what the proportions should be (known as *a priori* expectations); fit to a theory or distribution
 - Single row/column of observations. One explanatory
- Contingency
 - We don't know what the proportions should be (without *a priori* expectations) but we know they should be the same in each
 - At least 2 x 2. Two explanatory variables

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- recognise when to use chi-squared Goodness of Fit and Contingency tests (MLO 2)
- be able to carry out, interpret and report scientifically both types of test in R (MLO 3 and 4)

Follow up from last week's practical

- Independent study: seal myoglobin exercise Live demo.
- And why ggplot rocks!

